J. M. Alonso, A. N. Stepanova, and T. J. Leisse, Genomewide insertional mutagenesis of Arabidopsis thaliana, Science, vol.301, pp.653-657, 2003.

B. N. Ames, Assay of inorganic phosphate, total phosphate and phosphatases, Methods in Enzymology, vol.8, pp.115-118, 1966.

A. B. Arpat, P. Magliano, S. Wege, H. Rouached, A. Stefanovic et al., Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate, The Plant Journal, vol.71, pp.479-491, 2012.

K. Aung, S. Lin, C. Wu, Y. Huang, C. Su et al., pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene, Plant Physiology, vol.141, pp.1000-1011, 2006.

O. Batistic, R. Waadt, L. Steinhorst, K. Held, and J. Kudla, CBLmediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores, The Plant Journal, vol.61, pp.211-222, 2010.

R. Bari, D. Pant, B. Stitt, M. Scheible, and W. R. , PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants, Plant Physiology, vol.141, pp.988-999, 2006.

I. Baxter, J. Tchieu, M. R. Sussman, M. Boutry, M. G. Palmgren et al., Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice, Plant Physiology, vol.132, pp.618-628, 2003.

M. Bournier, N. Tissot, S. Mari, J. Boucherez, E. Lacombe et al., Arabidopsis FERRITIN 1 (AtFer1) gene regulation by the PHOSPHATE STARVATION RESPONSE 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis, Journal of Biological Chemistry, vol.288, pp.22670-22680, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860372

R. Bustos, G. Castrillo, F. Linhares, M. I. Puga, V. Rubio et al., A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis, PLOS Genetics, vol.6, p.1001102, 2010.

I. Cakmak and H. Marschner, Mechanism of phosphorus-induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus, Physiologia Plantarum, vol.68, pp.483-490, 1986.

T. J. Chiou, K. Aung, S. I. Lin, C. C. Wu, S. F. Chiang et al., Regulation of phosphate homeostasis by microRNA in Arabidopsis, The Plant Cell, vol.18, pp.412-421, 2006.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, The Plant Journal, vol.6, pp.735-743, 1998.

C. Curie, G. Cassin, D. Couch, F. Divol, K. Higuchi et al., Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters, Annals of Botany, vol.103, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00367118

M. D. Curtis and U. Grossniklaus, A gateway cloning vectors set for high-throughput functional analysis of genes in planta, Plant Physiology, vol.133, pp.462-469, 2003.

E. Delhaize and P. J. Randall, Characterization of a phosphateaccumulator mutant of Arabidopsis thaliana, Plant Physiology, vol.107, pp.207-213, 1995.

P. Doerner, Phosphate starvation signaling: a threesome controls systemic P(i) homeostasis, Current Opinion in Plant Biology, vol.11, pp.536-540, 2008.

B. Dong, Z. Rengel, and E. Delhaize, Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana, Planta, vol.205, pp.251-256, 1998.

K. Fetter, V. Van-wilder, M. Moshelion, and F. Chaumont, Interactions between plasma membrane aquaporins modulate their water channel activity, The Plant Cell, vol.16, pp.215-228, 2004.

J. Franco-zorrilla, E. Gonzalez, R. Bustos, F. Linhares, A. Leyva et al., The transcriptional control of plant responses to phosphate limitation, Journal of Experimental Botany, vol.55, pp.285-293, 2004.

J. M. Franco-zorrilla, A. Valli, M. Todesco, I. Mateos, M. I. Puga et al., Target mimicry provides a new mechanism for regulation of microRNA activity, Nature Genetics, vol.39, pp.1033-1037, 2007.

H. Fujii, T. J. Chiou, S. I. Lin, K. Aung, and J. K. Zhu, A miRNA involved in phosphate-starvation response in Arabidopsis, Current Biology, vol.15, pp.2038-2043, 2005.

N. Grotz, T. Fox, C. E. Park, W. Guerinot, M. L. Eide et al., Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency, Proceedings of the National Academy of Sciences, vol.95, pp.7220-7224, 1998.

M. L. Guerinot, The ZIP family of metal transporters, Biochimica et Biophysica Acta, vol.1465, pp.190-198, 2000.

J. L. Hall and L. E. Williams, Transition metal transporters in plants, Journal of Experimental Botany, vol.54, pp.2601-2613, 2003.

D. Hamburger, E. Rezzonico, J. Macdonald-comber-petetot, C. Somerville, and Y. Poirier, Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem, The Plant Cell, vol.14, pp.889-902, 2002.

A. Honsbein, S. Sokolovski, C. Grefen, P. Campanoni, R. Pratelli et al., A tripartite SNARE-K+ channel complex mediates in channeldependent K+ nutrition in Arabidopsis, The Plant Cell, vol.21, pp.2859-2877, 2009.

L. C. Hsieh, S. I. Lin, A. C. Shih, J. W. Chen, W. Y. Lin et al., Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing, Plant Physiology, vol.151, pp.2120-2132, 2009.

C. Huang, S. J. Barker, P. Langridge, F. W. Smith, and R. D. Graham, Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and-deficient barley roots, Plant Physiology, vol.124, pp.415-422, 2000.

, Cross talk between zinc and phosphate homeostasis in Arabidopsis | Page, vol.13, p.14

, gene is consistent with a role in K+ nutrition, The Plant Journal, vol.9, pp.195-203

B. S. Leach, J. F. Collawn, and W. W. Fish, Behavior of glycopolypeptides with empirical molecular weight estimation methods, Biochemistry, vol.19, pp.5734-6747, 1980.

S. I. Lin, S. F. Chiang, W. Y. Lin, J. W. Chen, C. Y. Tseng et al., Regulatory network of microRNA399 and PHO2 by systemic signaling, Plant Physiology, vol.147, pp.732-746, 2008.

T. Y. Liu, T. K. Huang, C. Y. Tseng, Y. S. Lai, S. I. Lin et al., PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis, The Plant Cell, vol.24, pp.2168-2183, 2012.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, pp.402-408, 2001.

J. K. Loneragan, D. L. Grunes, R. M. Welch, E. A. Aduayi, A. Tengah et al., Phosphorus accumulation and toxicity in leaves in relation to zinc supply, Soil Science Society of America Journal, vol.46, pp.345-352, 1982.

J. F. Loneragan and M. J. Webb, Interactions between zinc and other nutrients affecting the growth of plants, Zinc in soils and plants, pp.119-134, 1993.

H. Marschner and I. Cakmak, Mechanism of phosphorus-induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency, Physiologia Plantarum, vol.68, pp.491-496, 1986.

A. C. Martín, J. C. Del-pozo, J. Iglesias, V. Rubio, R. Solano et al., Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis, The Plant Journal, vol.24, pp.1-11, 2000.

P. Mäser, S. Thomine, and J. I. Schroeder, Phylogenetic relationships within cation transporter families of Arabidopsis, Plant Physiology, vol.126, pp.1646-1667, 2001.

U. S. Muchhal and K. G. Raghothama, Transcriptional regulation of plant phosphate transporters, Proceedings of the National Academy of Sciences, USA 96, pp.5868-5872, 1999.

A. Nebenfuhr, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz et al., Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system, Plant Physiology, vol.121, pp.1127-1141, 1999.

B. K. Nelson, X. Cai, and A. Nebenfuehr, A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, The Plant Journal, vol.51, pp.1126-1136, 2007.

W. A. Norvell and R. M. Welch, Growth and nutrient uptake by barley (Hordeum vulgare L. cv Herta): studies using an N-(2-hydroxyethyl) ethylenedinitrilotriacetic acid-buffered nutrient solution technique: I. Zinc ion requirements, Plant Physiology, vol.101, pp.619-625, 1993.

L. Nussaume, S. Kanno, H. Javot, E. Marin, N. Pochon et al., Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Science 2, 83. Palmer CM, Guerinot ML, Nature Chemical Biology, vol.5, pp.731-738, 2008.

B. D. Pant, M. Musialak-lange, P. Nuc, P. May, A. Buhtz et al., Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing, Plant Physiology, vol.150, pp.1541-1555, 2009.

A. Perea-garcía, A. Garcia-molina, N. Andrés-colás, F. Vera-sirera, M. A. Pérez-amador et al., Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling, Plant Physiology, vol.162, pp.180-194, 2013.

Y. Poirier and M. Bucher, Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book 1, e0024, 2002.

Y. Poirier, S. Thoma, C. Somerville, and J. Schiefelbein, Mutant of Arabidopsis deficient in xylem loading of phosphate, Plant Physiology, vol.97, pp.1087-1093, 1991.

C. Ribot, Y. Wang, and Y. Poirier, Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid, Planta, vol.227, pp.1025-1036, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01759694

C. Ribot, C. Zimmerli, E. E. Farmer, P. Reymond, and Y. Poirier, Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1dependent pathway, Plant Physiology, vol.147, pp.696-706, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01759689

A. D. Robson and M. G. Pitman, Interactions between nutrients in higher plants, Encyclopaedia of plant physiology, vol.15, pp.287-312, 1983.

H. Rouached, A. B. Arpat, and Y. Poirier, Regulation of phosphate starvation responses in plants: signaling players and cross-talks, Molecular Plant, vol.3, pp.288-299, 2010.

H. Rouached, D. Secco, A. B. Arpat, and Y. Poirier, The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis, BMC Plant Biology, vol.24, 2011.

H. Rouached, A. Stefanovic, D. Secco, B. Arpat, A. Gout et al., Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis, The Plant Journal, vol.65, pp.557-570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586802

H. Rouached, M. Wirtz, R. Alary, R. Hell, A. B. Arpat et al., Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis, Plant Physiology, vol.147, pp.897-911, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00286440

V. Rubio, F. Linhares, R. Solano, A. C. Martín, J. Iglesias et al., A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae, Genes and Development, vol.15, pp.2122-2133, 2001.

N. M. Safaya and A. P. Gupta, Differential susceptibility of corn cultivars to zinc deficiency, Agronomy Journal, vol.71, pp.132-136, 1979.

A. A. Sanderfoot, V. Kovaleva, D. C. Bassham, and N. V. Raikhel, Interactions between syntaxins identify at least five SNARE complexes within the golgi/prevacuolar system of the Arabidopsis cell, Molecular Biology of the Cell, vol.12, pp.3733-3743, 2001.

H. Shin, H. S. Shin, R. Chen, and M. J. Harrison, Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation, The Plant Journal, vol.45, pp.712-726, 2006.

S. A. Sinclair and U. Krämer, The zinc homeostasis network of land plants, Biochimica et Biophysica Acta, vol.1823, pp.1553-1567, 2012.

J. P. Singh, R. E. Karamanos, and J. Stewart, The mechanism of phosphorus-induced zinc deficiency in bean, 1988.

, Canadian Journal of Soil Science, vol.68, pp.345-358

F. W. Smith, A. L. Rae, and M. J. Hawkesford, Molecular mechanisms of phosphate and sulphate transport in plants, Biochimica et Biophysica Acta, vol.1465, pp.236-245, 2000.

V. V. Sridhar, A. Kapoor, K. L. Zhang, J. J. Zhu, T. Zhou et al., Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination, Nature, vol.447, pp.735-738, 2007.

A. Stefanovic, C. Ribot, H. Rouached, Y. Wang, J. Chong et al., Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways, The Plant Journal, vol.50, pp.982-994, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01759708

J. E. Van-de-mortel, A. Villanueva, L. Schat, H. Kwekkeboom, J. Coughlan et al., Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens, Plant Physiology, vol.142, pp.1127-1147, 2006.

T. S. Verma and R. S. Minhas, Zinc and phosphorus interaction in a wheat-maize cropping system, Fertilizer Research, vol.13, pp.77-86, 1987.

Y. Wang, C. Ribot, E. Rezzonico, and Y. Poirier, Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis, Plant Physiology, vol.135, pp.400-411, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01759711

W. J. Webb and J. F. Loneragan, Effect of zinc deficiency on growth, phosphorus concentration, and phosphorus toxicity of wheat plants, Soil Science Society of America Journal, vol.52, pp.1676-1680, 1988.

W. J. Webb and J. F. Loneragan, Zinc translocation to wheat roots and its implications for a phosphorus/zinc interaction in wheat plants, Journal of Plant Nutrition, vol.13, pp.1499-1512, 1990.

M. Weber, E. Harada, C. Vess, E. Roepenack-lahaye, and S. Clemens, Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors, The Plant Journal, vol.37, pp.269-281, 2004.

E. Zelazny, J. W. Borst, M. Muylaert, H. Batoko, M. A. Hemminga et al., FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization, Proceedings of the National Academy of Sciences, vol.104, pp.12359-12364, 2007.

Y. Zhou and M. Ni, SHB1 plays dual roles in photoperiodic and autonomous flowering, vol.331, pp.50-57, 2009.

Y. Zhou, X. Zhang, X. Kang, X. Zhao, X. Zhang et al., SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development, The Plant Cell, vol.21, pp.106-117, 2009.

Y. G. Zhu, S. E. Smith, and F. A. Smith, Plant growth and cation composition of two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency, Journal of Experimental Botany, vol.52, pp.1277-1282, 2001.