L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

, Pleydell for programming the first version of the model, P.H. Thrall for reviewing a previous 638 version of this manuscript, the reviewers and Editor for their valuable comments, the INRA 639 BioSP and the CIRAD SouthGreen bioinformatics platforms and L. Houde and S

. Agreste, Infos rapides -Fruits -Pêches, 2013.

. Agreste, Infos rapides -Fruits -Pêches, 2014.

. Agreste, Infos rapides -Fruits -Pêches, 2015.

S. Astier, J. Albouy, Y. Maury, C. Robaglia, and H. Lecoq, Principles of Plant Virology, 2007.

, Science Publishers

H. J. Barclay and M. J. Vreysen, A dynamic population model for tsetse, p.651, 2011.

, Glossinidae) area-wide integrated pest management, Popul. Ecol, vol.53, pp.89-110

J. M. Barnes, R. Trinidad-correa, T. V. Orum, R. Felix-gastelum, and M. R. Nelson, 653 Landscape ecology as a new infrastructure for improved management of plant 654 viruses and their insect vectors in agroecosystems, Ecosyst. Health, vol.5, pp.26-35, 1999.

A. Breukers, W. Van-der-werf, J. P. Kleijnen, M. Mourits, and A. O. Lansink, Cost-656 effective control of a quarantine disease: A quantitative exploration using "design of 657 experiments" methodology and bio-economic modeling, Phytopathology, vol.97, pp.945-957, 2007.

M. Cambra, N. Capote, A. Myrta, and G. Llácer, Plum pox virus and the estimated 659 costs associated with sharka disease, EPPO Bull, vol.36, pp.202-204, 2006.

, Comment citer ce document

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with 661 roguing and replanting, J. Appl. Ecol, vol.31, pp.413-427, 1994.

A. Courcoul, H. Monod, M. Nielen, D. Klinkenberg, L. Hogerwerf et al., , p.663

E. , Modelling the effect of heterogeneity of shedding on the within herd, 2011.

, Coxiella burnetii spread and identification of key parameters by sensitivity analysis

, Theor. Biol, vol.284, pp.130-141

S. R. Coutts, R. D. Van-klinken, H. Yokomizo, and Y. M. Buckley, What are the key 667 drivers of spread in invasive plants: dispersal, demography or landscape: and how 668 can we use this knowledge to aid management?, Biol. Invasions, vol.13, pp.1649-1661, 2011.

N. J. Cunniffe, R. C. Cobb, R. K. Meentemeyer, D. M. Rizzo, and C. A. Gilligan, , 2016.

, Modeling when, where, and how to manage a forest epidemic, motivated by sudden 671 oak death in California, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.5640-5645

N. J. Cunniffe, F. F. Laranjeira, F. M. Neri, R. E. Desimone, and C. A. Gilligan, Cost-673 effective control of plant disease when epidemiological knowledge is incomplete: 674 modelling bahia bark scaling of citrus, PLoS Comput. Biol, vol.10, p.1003753, 2014.

N. J. Cunniffe, R. O. Stutt, R. E. Desimone, T. R. Gottwald, and C. A. Gilligan, , 2015.

, Optimising and communicating options for the control of invasive plant disease when 677 there is epidemiological uncertainty, PLoS Comput. Biol, vol.11, p.1004211

S. Dallot, T. Gottwald, G. Labonne, and J. Quiot, Spatial pattern analysis of sharka 679 disease (Plum pox virus strain M) in peach orchards of southern France, 2003.

, Phytopathology, vol.93, pp.1543-52

K. T. Faulkner, M. P. Robertson, M. Rouget, and J. R. Wilson, Border control for 682 stowaway alien species should be prioritised based on variations in establishment 683 debt, J. Environ. Manage, vol.180, pp.301-309, 2016.

, Comment citer ce document

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

J. A. Filipe, R. C. Cobb, R. K. Meentemeyer, C. A. Lee, Y. S. Valachovic et al., , p.685

D. M. Gilligan and C. A. , Landscape epidemiology and control of pathogens 686 with cryptic and long-distance dispersal: sudden oak death in northern Californian 687 forests, PLoS Comput. Biol, vol.8, p.1002328, 2012.

G. A. Forster and C. A. Gilligan, Optimizing the control of disease infestations at the 689 landscape scale, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.4984-4989, 2007.

. Franceagrimer, Observatoire de la formation des prix et des marges des produits 691 alimentaires -Prix à l'expédition et au détail en GMS de la pêche et de la nectarine 692, 2015.

C. Fraser, S. Riley, R. M. Anderson, and N. M. Ferguson, Factors that make an 696 infectious disease outbreak controllable, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.6146-6151, 2004.

T. R. Gottwald, E. Wierenga, W. Q. Luo, P. , and S. , Epidemiology of Plum pox 'D' 698 strain in Canada and the USA, Can. J. Plant Pathol, vol.35, pp.442-457, 2013.

A. V. Gougherty, K. T. Pazdernik, M. S. Kaiser, and F. W. Nutter, Evaluation of 700 sampling and testing efficiencies of Plum pox virus eradication programs in 701 Pennsylvania and Ontario, Plant Dis, vol.99, pp.1247-1253, 2015.

J. Holt, J. Colvin, and V. Muniyappa, Identifying control strategies for tomato leaf curl 703 virus disease using an epidemiological model, J. Appl. Ecol, vol.36, pp.625-633, 1999.

G. Hughes, N. Mcroberts, L. V. Madden, and T. R. Gottwald, Relationships between 705 disease incidence at two levels in a spatial hierarchy, Phytopathology, vol.87, pp.542-550, 1997.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

S. R. Hyatt-twynam, S. Parnell, R. O. Stutt, T. R. Gottwald, C. A. Gilligan et al., , p.707

N. J. , Risk-based management of invading plant disease, New Phytol, vol.214, pp.1317-708, 2017.

. Insee, Indice des prix à la consommation -Secteurs conjoncturels (mensuel, ensemble 710 des ménages, métropole + DOM, base 1998) -Ensemble hors tabac, 2015.

M. J. Jeger and M. S. Chan, Theoretical aspects of epidemics: uses of analytical 713 models to make strategic management decisions, Can. J. Plant Pathol, vol.17, pp.109-114, 1995.

M. J. Jeger, L. V. Madden, . Van-den, and F. Bosch, Plant virus epidemiology: 715 Applications and prospects for mathematical modeling and analysis to improve 716 understanding and disease control, Plant Dis, vol.102, pp.837-854, 2018.

J. , Arrêté du 17 mars 2011 relatif à la lutte contre le Pum Pox Virus, agent causal de 718 la maladie de la Sharka, sur les végétaux sensibles du genre Prunus, 2011.

A. Kleczkowski, K. Ole?, E. Gudowska-nowak, and C. A. Gilligan, Searching for the 723 most cost-effective strategy for controlling epidemics spreading on regular and small-724 world networks, J. R. Soc. Interface, vol.9, pp.158-169, 2012.

G. Labonne, M. Yvon, J. Quiot, L. Avinent, and G. Llácer, Aphids as potential 726 vectors of Plum pox virus: comparison of methods of testing and epidemiological 727 consequences, Acta Hortic, vol.386, pp.207-218, 1995.

, Comment citer ce document

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

G. Lo-iacono, . Van-den, F. Bosch, and C. A. Gilligan, Durable resistance to crop 729 pathogens: An epidemiological framework to predict risk under uncertainty, PLoS 730 Comput. Biol, vol.9, p.1002870, 2013.

A. Lurette, S. Touzeau, M. Lamboni, and H. Monod, Sensitivity analysis to identify key 732 parameters influencing Salmonella infection dynamics in a pig batch, J. Theor. Biol, vol.733, pp.43-52, 2009.

M. L. Ndeffo-mbah and C. A. Gilligan, Optimization of control strategies for epidemics 735 in heterogeneous populations with symmetric and asymmetric transmission, J. Theor, 2010.

, Biol, vol.262, pp.757-763

M. R. Nelson, R. Felix-gastelum, T. V. Orum, L. J. Stowell, and D. E. Myers, , 1994.

, Geographic information systems and geostatistics in the design and validation of 739 regional plant virus management programs, Phytopathology, vol.94, pp.898-905

J. Papaïx, K. Adamczyk-chauvat, A. Bouvier, K. Kiêu, T. Lannou et al., 741 Pathogen population dynamics in agricultural landscapes: The Ddal modelling 742 framework, Infect. Genet. Evol, vol.27, pp.509-520, 2014.

J. Papaïx, L. Rimbaud, J. J. Burdon, J. Zhan, and P. Thrall, Differential impact of 744 landscape-scale strategies for crop cultivar deployment on disease dynamics, 745 resistance durability and long-term evolutionary control, Evol. Appl, vol.11, pp.705-717, 2018.

S. Parnell, T. R. Gottwald, C. A. Gilligan, N. J. Cunniffe, . Van-den et al., The 747 effect of landscape pattern on the optimal eradication zone of an invading epidemic, 2010.

, Phytopathology, vol.100, pp.638-644

S. Parnell, T. R. Gottwald, T. Riley, . Van-den, and F. Bosch, A generic risk-based 750 surveying method for invading plant pathogens, Ecol. Appl, vol.24, pp.779-790, 2014.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

S. Parnell, T. R. Gottwald, . Van-den, F. Bosch, and C. A. Gilligan, Optimal strategies for 752 the eradication of asiatic citrus canker in heterogeneous host landscapes, 2009.

, Phytopathology, vol.99, pp.1370-1376

S. Parnell, . Van-den, F. Bosch, T. Gottwald, and C. A. Gilligan, Surveillance to inform 755 control of emerging plant diseases: An epidemiological perspective, Annu. Rev, 2017.

, Phytopathol, vol.55, pp.591-610

T. M. Perring, N. M. Gruenhagen, and C. A. Farrar, Management of plant viral 758 diseases through chemical control of insect vectors, Annu. Rev. Entomol, vol.44, pp.457-481, 1999.

D. R. Pleydell, S. Soubeyrand, S. Dallot, G. Labonne, J. Chadoeuf et al., , p.760

G. Thébaud, Estimation of the dispersal distances of an aphid-borne virus in a 761 patchy landscape, PLoS Comput. Biol, vol.14, p.1006085, 2018.

G. Pujol, B. Iooss, and A. Janon, , p.763

T. Delage, J. Fruth, L. Gilquin, J. Guillaume, L. Le-gratiet et al., , p.764

F. Monari, R. Oomen, B. Ramos, O. Roustant, E. Song et al., , p.765

F. Weber, sensitivity: Global sensitivity analysis of model outputs, 2017.

E. Quinet, L'évaluation socioéconomique des investissements publics, 2013.

J. Quiot, G. Labonne, M. Boeglin, C. Adamolle, L. Y. Renaud et al., 771 Behaviour of two isolates of Plum pox virus inoculated on peach and apricot trees: 772 first results, Acta Hortic, vol.386, pp.290-297, 1995.

. R-core-team, R: A Language and Environment for Statistical Computing, /. R Foundation for Statistical Computing, 2012.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, C. Bruchou, S. Dallot, D. R. Pleydell, E. Jacquot et al., , p.776

G. Thébaud, Using sensitivity analysis to identify key factors for the 777 propagation of a plant epidemic, R. Soc. Open Sci, vol.5, p.171435, 2018.

L. Rimbaud, S. Dallot, T. Gottwald, V. Decroocq, E. Jacquot et al., , p.779

G. , Sharka epidemiology and worldwide management strategies: learning 780 lessons to optimize disease control in perennial plants, Annu. Rev. Phytopathol, vol.781, pp.357-378, 2015.

L. Rimbaud, J. Papaïx, J. Rey, L. G. Barrett, and P. H. Thrall, Assessing the 783 durability and efficiency of landscape-based strategies to deploy plant resistance to 784 pathogens, PLoS Comput. Biol, vol.14, p.1006067, 2018.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., , p.786

S. Tarantola, Global Sensitivity Analysis, The Primer, 2008.

M. S. Sisterson and D. C. Stenger, Roguing with replacement in perennial crops: 788 conditions for successful disease management, Phytopathology, vol.103, pp.117-128, 2013.

I. M. Sobol, Uniformly distributed sequences with an additional uniform property, 1976.

, USSR Comput. Math. Math. Phys, vol.16, pp.236-242

I. M. Sobol, Sensitivity analysis for non-linear mathematical models, Math. Modell, 1993.

, Comput. Exp, vol.1, pp.407-414

D. Sutic, Etat des recherches sur le virus de la sharka, Annales de Phytopathologie, vol.794, pp.161-170, 1971.

R. N. Thompson, C. A. Gilligan, and N. J. Cunniffe, Control fast or control smart: When 796 should invading pathogens be controlled?, PLoS Comput. Biol, vol.14, 2018.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

, Different scenarios are simulated: absence of disease, absence of management, disease Comment citer ce document

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Dallot, S. Bruchou, C. Thoyer, S. Jacquot, E. Soubeyrand et al., Step 1: Sobol's sensitivity indices of the 23 control parameters and 6 epidemiological parameters on the mean output of 30 stochastic replicates (?NPV, average net present value). ????SI?_1=0.64?. Parameters in black are kept in step 2; parameters in red are removed, Phytopathology, vol.109, issue.2, pp.1184-1197, 2019.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Management strategies. Surveillance, plantings and removals according to the reference management (French management in orchards; A), or to the combination of control parameters associated with best value (B) or the highest percentile (C) of the economic criterion ?NPV. In panels B and C, given its radius, the security zone may consist of the contaminated orchard only, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

, Boxplots of Y (equivalent number of fully productive trees per hectare and per year, A), and NPV (net present value of all orchards of the landscape, B) after 30 years of sharka management. Different scenarios are simulated: absence of disease, absence of management, disease managed with the reference strategy (French management in orchards), or with economically improved management strategies identified through two different methods

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig and . S3, Step 1: Sobol's sensitivity indices of the 23 control parameters and 6 epidemiological parameters on the standard deviation of the stochastic replicates (A: ?Y, average number of fully productive trees; B: ?NPV, average net present value). Parameters in black are kept in step 2; parameters in red are removed

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig, . S4-;-l, S. Dallot, C. Bruchou, S. Thoyer et al., Step 1: Sobol's sensitivity indices of the 23 control parameters and 6 epidemiological parameters on the mean epidemiological output of the stochastic replicates (?Y, average number of fully productive trees). Parameters in black are kept in step 2; parameters in red are removed; parameters in green are the epidemiological parameters. Results on the economic output (average net present value, ?NPV) are presented in Fig. 2. document : Rimbaud, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig and . S6, and distribution of each parameter for the highest and lowest percentiles (second and last columns) of the economic criterion (?NPV, average net present value) in the third sensitivity analysis. Improved values for each control parameter are indicated by red dots. The duration of young orchards (?y) is irrelevant in the best-value strategy because the observation frequency, Step 3: Five best values

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Dynamics of annual prevalence (blue curves) and incidence (red curves) under different management strategies (French management in orchards, or economically improved strategies) and epidemic contexts (reference context, or harsher epidemics: half the duration of the expected latent period, ?exp, or doubled transmission coefficient, ?) in 100 simulations, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig, . S8-;-l, S. Dallot, C. Bruchou, S. Thoyer et al., Dynamics of observations, tree and orchard removals, under different management strategies (French management in orchards, or economically improved strategies) and epidemic contexts (reference context, or harsher epidemics: half the duration of the expected latent period, ?exp, or doubled transmission coefficient, ?) in 100 simulations. The dashed vertical line indicates the beginning of disease management. document : Rimbaud, Phytopathology, vol.109, issue.7, pp.1184-1197, 2019.

. Fig and . S9, Boxplots of Y (equivalent number of fully productive trees per hectare and per year in A and C), and NPV (net present value in B and D) after 30 years of management in harsher epidemic contexts (half the duration of the expected latent period, ?exp, in A and B; or doubled transmission coefficient, C and D)

, Different scenarios are simulated: absence of disease, absence of management, disease managed with the reference strategy (French management in orchards), or with economically improved management strategies identified through two different methods

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig and . S10, Boxplots of Y (equivalent number of fully productive trees per hectare and per year in A and C), and NPV (net present value in B and D) after 30 years of management in harsh epidemic contexts (half the duration of the expected latent period, ?exp, in A and B; or doubled transmission coefficient, ?, in C and D), with strategies specifically improved in these contexts. Different scenarios are simulated: absence of disease, absence of management, disease managed with the reference strategy (French management in orchards), or with economically improved management strategies identified through two different methods

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180

. Fig and . S11, Dynamics of annual prevalence (blue curves) and incidence (red curves) under management strategies specifically improved in harsh epidemic contexts (half the duration of the expected latent period, ?exp, or doubled coefficient of transmission, ?) in 100 simulations. The dashed vertical line indicates the beginning of disease management

L. Rimbaud, S. Dallot, C. Bruchou, S. Thoyer, E. Jacquot et al., Improving management strategies of plant diseases using sequential sensitivity analyses, Comment citer ce, vol.109, issue.7, pp.1184-1197, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095180